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ABSTRACT

We address independent component analysis (ICA) of piecewise stationary and non-
Gaussian signals and propose a novel ICA algorithm called Block EFICA that is based on
this generalized model of signals. The method is a further extension of the popular non-
Gaussianity-based FastICA algorithm and of its recently optimized variant called EFICA.
In contrast to these methods, Block EFICA is developed to effectively exploit varying
distribution of signals, thus, also their varying variance in time (nonstationarity) or,
more precisely, in time-intervals (piecewise stationarity). In theory, the accuracy of the
method asymptotically approaches Cramér-Rao lower bound (CRLB) under common
assumptions when variance of the signals is constant. On the other hand, the
performance is practically close to the CRLB even when variance of the signals is
changing. This is demonstrated by comparing our algorithm with various methods that
are asymptotically efficient within ICA models based either on the non-Gaussianity or
the nonstationarity. The benefit of our algorithm is demonstrated by examples with

real-world audio signals.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The instantaneous linear mixture model is the basic
configuration considered in blind source separation (BSS)
[1]. The relation between unobserved original signals and
observed measured signals is here given by equation

X =AS, (1)

where X and S are matrices with N columns, each of which
represents samples of the measured and the original
signals, respectively. We will consider the regular case,
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thus, the number of rows of X and S is the same and equal
to d, and the mixing matrix A is a d x d regular matrix.

Estimating the mixing matrix A or equivalently the
original signals S from the data X is the general task of
BSS. To solve this problem, a principle giving some
assumption about the original signals should be intro-
duced. The most popular one is based on the assumption
of their statistical independence, which is used by a
certain class of models that fall within a popular
BSS discipline called independent component analysis
(ICA) [2].

Since Comon’s pioneering paper [3], numerous suc-
cessful algorithms have been proposed using basic models
based either on non-Gaussianity [4-6], nonstationarity
[7-9] or spectral diversity (coloration) [10,11] of the
original signals. Later, various improvements of the earlier
methods were developed [12]. The most recent algorithms
provide fast and reliable solutions while attaining the best
possible accuracy fundamentally limited by the respective
Cramér-Rao lower bound (CRLB) [13,15-17].
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While methods assuming non-Gaussianity of signals
require computation of higher-order statistics (HOS), the
methods using nonstationarity or spectral diversity
usually need second-order statistics (SOS) only, which
provides faster implementations usually through joint
approximate diagonalization of a set of matrices; see e.g.,
[14,17-19]. On the other hand, each approach cannot
separate sources if the respective assumptions are not
met, which means certain limitations. For instance, the
nonstationarity-based methods cannot separate signals
having the same dynamics. In this respect, the non-
Gaussianity-based methods are popular thanks to their
widest application area, e.g., in telecommunications,
biomedical signal processing, or speech and audio
processing.

Since real signals may often exhibit both non-
Gaussianity, nonstationarity or temporal structure, there
are attempts to derive methods that combine two or more
models to enhance the application area and to improve
the performance [20,21]. However, the theoretical back-
ground of combined models is much more complex. Most
methods therefore rely on various heuristically chosen
criteria [22-24] or decision-driven combinations of basic
algorithms [20,25], rather than optimizing the perfor-
mance in a straightforward way through the theory.

This paper focuses on the model combining the non-
Gaussianity and the nonstationarity assumptions through
the so-called piecewise stationary model. The optimum
solution of this model was discussed in [26], but few
methods were proposed for finding it. The fully general
framework was considered by Pham [27]. He proposed an
algorithm, from here on named as NSNG, that performs
(quasi)-maximum likelihood estimation (MLE), which
yields excellent performance in theory. However, in our
experimental tests [28], we have observed cases of
instability and misconvergence of NSNG. Specifically, the
algorithm seems to work well in simple scenarios, e.g.,
where “few” signals are separated and their properties
perfectly fit the model. By contrast, the method failed
with nonnegligible probability in more difficult examples
or when separating real-world signals such as EEG data or
real audio mixtures.

To provide a reliable algorithm with lower computa-
tional burden and comparable performance with that of
NSNG, we here introduce a further extension of the very
popular FastICA algorithm [5], which was originally
developed for non-Gaussian signals. The method is called
Block EFICA! as it is an extension of the EFICA algorithm
[16] (a theoretically optimized FastICA variant for non-
Gaussian signals) for piecewise stationary signals.

The paper is organized as follows. The following
section introduces the piecewise stationary model and
basic notations used throughout the paper. Section 3
surveys Cramér-Rao bounds that were derived for several
levels of generalizations of the basic non-Gaussianity-
based ICA model. The proposal of the Block EFICA
algorithm is given in Section 4 after short descriptions of

1 The primary version of Block EFICA introduced in [28] was referred
to as Extended EFICA.

its forgoers: FastICA [5] and EFICA [16]. Section 5 provides
performance analysis of behavior of FastICA under the
assumption of piecewise stationary signals, and intro-
duces optimized selection of important parameters of
Block EFICA to achieve the best performance. Finally,
experimental results demonstrating performance of the
Block EFICA in comparison with other methods are
presented by Section 6.

2. Piecewise stationary model

The basic ICA model exploiting non-Gaussianity of the
sources is defined by

X = As, (2)

where s = [sq,...,54]" is a vector of independent random
variables (RVs),2 and each of them represents one of the
unknown original signals. In practice, this means that the
data matrices X and S consist of N i.i.d. realizations of x
and s, respectively, whose relation is given through the
transform A. The very assumption of independence of
S1....,54 is used for finding the de-mixing transform A~!,
which can be achieved only up to an indeterminable order,
scales, and signs of its rows.

Compared to the basic ICA model (2), the piecewise
stationary model consists in that the samples of the
original signals need not be identically distributed. The
probability density function (pdf) f,(x) of s, thus may be
different at each time instant/interval.

However, to allow practical estimation of signal
statistics on data blocks, we will assume that there are
M blocks of S of the same integer length N/M, where,
within each block, the distribution of the signals is
unchanging. Therefore, we will use the superscript (I) to
denote quantities, RVs or functions that are related to the
I-th block. For instance, this means that for each block of
data X, say for the I-th block X%, it holds X’ = AS?, which
corresponds to N/M i.i.d. realizations according to model

xD = As?, (3)

where x® and s are vectors of corresponding RVs.

A particular case of the piecewise stationary model,
which will be called Block Gaussian model [14], is when all
the distributions of all RVs in (3) are Gaussian. This means
that all signals are white and Gaussian within each block,
and the piecewise stationarity consists only in that their
variances vary block-by-block.

3. Cramér-Rao lower bounds for independent
component analysis

We discuss several bounds that limit the accuracy
achievable by blind separation. Such limitation may be
given by the Cramér-Rao lower bound that is related to
the theoretical model of the original signals. In other
words, the bound is different for different models
requiring various assumptions about the original signals,

2 For simplicity, all RVs considered in the paper are assumed to have
zero mean and finite variance.
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whereby the separation principles are determined.
Although the bounds presented here may all be derived
as particular cases of the bound given for the most general
piecewise stationary model, for convenience, we start the
description with the basic ICA bound and then generalize
it gradually.

In general, CRLB is defined for an unbiased estimator of
some (multivariate) parameter 6, which is being estimated
from a data vector x that has the probability density
fxo(x10). CRLB is the lower bound for the covariance matrix
of any unbiased estimator 0 of 0, i.e.,

covyd = E[(0 — )@ — 6)"]. (4)

If the following Fisher information matrix (FIM) and its
inverse exist

(5)

Fo 1 dfux10) (afx.9<x|9>>T
"fauo) 30 a0 )

under the regularity conditions [29] it holds that
covy O=F! = CRLB[0],

where the matrix inequality means that the matrix
covy 0 — F ! is positive semidefinite.

In case of the instantaneous linear mixture X = AS, the
parameters intended for the estimation are the elements
of A™!. Let W be an unbiased estimator of A~'. Instead of
considering CRLB of W, it is useful to derive the bound for
the so-called gain matrix G=WA. Without loss of
generality, the indeterminacies of order, signs, and scales
of the original signals can be assumed to be resolved. G
should then be close to the identity, and the variances of
its nondiagonal elements, var[Gy,], k # ¢, reflect mean value
of residual interference between the separated signals
WX. Such a criterion, which is commonly used in signal
processing, reflects well the accuracy of the estimator W.

The CRLB for the basic ICA model (2) has been well
known since the 1990s [30,31]. We will denote the bound
by CRLB4, and it is given by

CRLB; [Gy, ] = N%’ k¢, (6)
where K = El/i (0] with y,(x) = —fi(%)/fi(x) being the
score function of the probability density function f(x) of
the k-th RV s;. Here s, is assumed to have unit variance,
thus, note that x’s are defined for unit-variance score
functions.

The bound for the piecewise stationary model (3) with
constant (unit) variance signals, denoted by CRLB,, is

given by [28]

K¢
N KiKe — 1’

where 7, € (1/MxM, k.

Now we introduce the most general bound, i.e., for the
piecewise stationary model (3) where the vanance of
the signals is not assumed to be constant. Let ok ’ be the
variance of s{, k=1,...,d, I=1,...,M, but " is still
defined for pdff“’( ) normallzed so as to correspond to RV
normalized to unit variance. Then, the bound could be

CRLB,[Gy/] = k¢, (7)

written in the form

CRLB3[Gy] = 11] AkaBk’;[— T k#¢, (8)
where
520
A = MZ 2(1) 5, (9)
M 20
Bie = %Z Ugm - (10)
=1 0%

This result was previously derived, e.g., in [26]. In
Appendix A, we provide a simple derivation of the bound
using the derivation of FIM from [32].

For the sake of completeness, we introduce the CRLB
for the Block Gaussian model, i.e., when all distributions
of signals are Gaussian. The bound easily follows from (8)
by taking K}!) =1 in (9) and (10). We will denote this
bound by CRLB,.

4. Block EFICA algorithm

We here describe our novel algorithm that is an
extension of its previous variants FastICA and EFICA. First,
the underlying methods are reminded in short as they
were proposed for solving the model (2). Second, the
building block of the proposed algorithm is given, which is
a straightforward extension of the one-unit FastICA
algorithm to the piecewise stationary signals. Finally, we
introduce the proposed algorithm.

4.1. FastICA and EFICA algorithms

The FastICA algorithm [5] was originally derived as a
method for solving the basic ICA problem (2). It is based
on optimization of a contrast function

c(wy) = E[G(w}z)], (11)

subject to the vector w!, whose optimum value is
the k-th row of de-mixing transform. The function G(-),
which applies elementwise, is a properly chosen non-
linear function whose derivative will be denoted by g(-).
The vector z is derived by transforming signals x
so that the components of z are not correlated and
have unit variance. After this preprocessing, which is
commonly referred to as sphering, it holds that
E[zz'] =L
The optimization of c(wy) is based on the iteration

w, < E[zg(w]2z)] — wiE[g'(W]2Z)]. (12)

In practice, i.e., when working with a finite number
of signal samples, the theoretical expectations are re-
placed by respective sample means, thus the resulting
de-mixing vectors/matrices are respective estimates
thereof.

The original FastICA was developed in two basic
versions: the one-unit and the symmetric one. While
the one-unit FastICA completes each iteration by normal-
izing the vector wy, the symmetric FastICA com-
putes d iterations (12) in parallel and does a symmetric



Z. Koldovsky et al. / Signal Processing 89 (2009) 2570-2584 2573

orthogonalization® of [w{, ..., w}]" to yield all rows of the
de-mixing matrix, whose practical estimate will be
denoted by w.

The theoretical (asymptotic) performance [32] of the
one-unit FastICA is characterized by

var[Gi'1 ~ - ViY,  k#¢, (13)

=z~

where G'Y = WA is the gain matrix, each of its rows
corresponds to the estimation of one de-mixing vector,
and V' = y,/12 with

e = Elskg€S0l. 7= B — 1
Vi = E[g'(S1)], Tk = Vi — Mo
B = Elg* (0] (14)

In case that the expectations do not exist it may signify
either bad choice of the function G(-) or zero leading term
in the asymptotic expansion of the variance (13). It is a
well-known feature in ICA that the optimum choice of G(-)
comes up to g(-) being the score function of s, (-
[13,31].

Among other things, this knowledge is taken into
account by the recently published EFICA algorithm [16],
which is designed to attain the best possible performance
limited by (6). The method proceeds in three steps: (1) it
preestimates all the original signals by means of the
symmetric FastICA with the test of saddle points [32], (2)
for each k=1,...,d, it adaptively chooses a nonlinearity
gdéf' g\ that approximates the score function ¥, (-), and (3)
it does fine-tunings and a refinement.

The fine-tunings consist in further one-unit FastICA
iterations for each signal separately, using the nonlinea-
rities found in step 2. The resulting de-mixing vectors
from the fine-tunings wy,...,w} are then optimally
combined by the refinement.

The refinement utilizes optimum weights computed
according to

Vig
Cke = V}’E‘F] (15)
1, k=c¢

We remark that we use slightly different definition of the
weights from that in [16] since it is handier for forth-
coming description of the Block EFICA. The modification
simply consists in normalizing the vectors wy,...,w},
which was not done in [16]; see [33] for details. The
weights are used to form matrix

W = [ca Wi /IWT I, CigW /W11 (16)

The k-th row of symmetrically orthogonalized version of
W;, ie., of (W W;")"2W/, yields the final estimate of
w,. This is done for each k=1,...,d separately, which
relaxes the orthogonality constraint [31] introduced by
the symmetric FastICA.

3 We use the well-established term “symmetric orthogonalization”
although “symmetric orthonormalization” would be more accurate.

The asymptotic performance of EFICA is given by
1 VlU VlU +1
var[Gy;] ~ Nil’{’f( et
Vie + Vi +1
The particular case when g = i, reveals superior prop-

erty of EFICA. It holds, then, that 8, = vy = Ky, i, = 1, and
VIY = 1/(i¢; — 1). Substituting this into (17) gives

k#¢. (17)

EF, . 1 K¢
var[Gy,] ~ —

—, k#t.
NKgr, —1° s

Compared to the CRLB; given by (6), the asymptotic
efficiency of EFICA in the framework of the basic ICA
model (2) follows.

4.2. One-unit FastICA for piecewise stationary signals

To take into account the piecewise stationary model,
we introduce a new definition of the contrast function
(11), which is

cw) = AVEGU Wiz D) + -+ AVEIGY (wiz™),
(18)

where G;}’,...,G;fv" are properly chosen nonlinear func-
tions, and A", ..., 2™ denote some weights.

It should be noted that this contrast cannot be viewed
as the contrast (11) with G(-) being a linear combination of
GY,...,G™, because each expectation in (18) depends on
different distributions from corresponding block of the
signals. Also, an important fact is that each term in (18) is
a valid contrast function itself. Since the mixing matrix is
the same in all blocks, (18) is a valid contrast function as
well. In other words, all the contrasts represented by the
terms in (18) have the same optimum points.

One-unit FastICA using the contrast function (18), from
here on referred to as block one-unit FastICA, works in the
way that it applies a different nonlinearity g(-) on each
block of signals. Thus, the iteration (12) changes to

w; < A EEZO g wiz)) - wiEg wiz )
4+t /”u;fw)(E[z(M’gﬁV’)(w[z(M))]
- wE[gl" Wiz, (19)

and the expectations are replaced by sample means in
practice.

As can be seen, the original one-unit FastICA is, when
setting 2’ =1/M and g’ =g, for all I=1,....M, a
particular case of the block version introduced here.
Theoretical conclusions derived later in this paper, there-
fore, yield an insight into the behavior of the original
FastICA (and also of other variants of FastICA) when
distributions of signals are different from one block to the
other.

4.3. Proposed Block EFICA algorithm

The Block EFICA algorithm takes into account the
piecewise stationarity of signals. The approach consists of
the following three steps that are similar to those in the
original EFICA up to the difference that consists in linking
the choice of nonlinearities with the fine-tuning into a
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common step due to higher precision. Also a different
approach for the choice of nonlinear functions is used,
because variance of signals in blocks need not be equal to
one as assumed by the approach used in EFICA.

BEF1 Separation by the symmetric FastICA with the test of
saddle points in order to obtain a preestimate of the
de-mixing matrix W. -

BEF2 Fine-tuning of each row of W by means of the
block one-unit FastICA (Section 4.2). The weights
and the nonlinearities in (19) are simultaneously
updated as described below. The simplified version
of the algorithm, called Uniform Block EFICA,
selects all the weights equal to an arbitrary nonzero
value.

BEF3 The refinement to get the most accurate and final
estimate of the whole de-mixing matrix.

A simplified illustration of the flow of Block EFICA is
shown in Fig. 1. In the following, we provide more details
on the steps of the algorithm.

The pre-estimation of the whole de-mixing matrix in
BEF1 could be done by any ICA method, which opens up
possible variations of the Block EFICA. Nevertheless, our
selection, the symmetric FastICA with the test of saddle
points, proves being suitable for wide variety of scenarios
[16]. The method allows fast and reliable separation of
non-Gaussian signals. Moreover, in practice it generally
allows significant separation of piecewise stationary
signals as well, which follows from the fact that the
symmetric FastICA is a special variant of the block one-
unit FastICA introduced in the previous subsection.
However, it has limited accuracy due to the nonoptimal
choice of the nonlinearity that is fixed for all signals and
blocks, and also due to the orthogonality constraint [31]
introduced by the symmetric orthogonalization. There-
fore, it is a suitable initialization for the fine-tuning done
by step BEF2.

In the fine-tunings (BEF2), the estimation of the k-th
signal, k = 1,...,d, is improved by starting the block one-
unit FastICA using appropriately chosen functions g;f’(‘)
and the weights A, I =1,..., M. Since the best choice of

K
g}!)() is the score function w}f’(-), we use the approxima-

tion by Pham’s estimator from [13]. The details are given
below in the extra subsection.

The choice of the weights /I;f) has an influence on the
performance of fine-tunings as well. Since it should be
analyzed first, the choice is given afterwards in Section 5
by the expression (27). In that section, we also justify the
introduction of the Uniform Block EFICA algorithm, which
sets all the weights to a constant.

Finally, the refinement step is done in the similar way
as in the original EFICA [16]. The fine-tuned and normal-
ized rows of the separating matrix resulting from BEF2,
Wi, ..., Wy, and the weights ¢, are used to form matrix

+ T
Wy = [CqW1, ..., CkdWal -

Then, the k-th row of the matrix (W;W;)~'/>W yields
the final estimate of wy,. The difference compared to EFICA
is that the weights c,, should be computed accordingly.
Namely, (15) is in fact a function of the performance
achieved by the fine-tuning in EFICA, i.e., by that of the
one-unit FastICA given by (13). However, the fine-tuning
in the Block EFICA is done by means of the block one-unit
FastICA algorithm, whose performance is different. The
performance is analyzed in Section 5, where the analytical
expression (28) for the weights follows.

4.4. Parametric estimation of score functions

Parametric estimation of score functions is a well-
established problem in statistical theory [34]. The para-
metric estimator proposed in [13] is suited for the
problems tackled by ICA algorithms. It is defined as the
minimizer of the mean square distance between a score
function y(-) and a linear combination of K basis functions
h1(X), e ]’l[((X), ie.,

K 2
jmin E [(woo - ; Gihi(x)) } : (20)
The merit consists in the fact that E[y(x)h(x)] = E[h' (x)] for
any function h(x). Thanks to this, the minimization is
possible without knowledge of y(-) and is fast, because it
only requires estimation of E[hix)hj(x)] and E[hx)],

BEFI BEF2 BEF3
preestimated
original convergence? Refinement
sources .
. . block one-unit
score function estimator |—>— X . @ —
mixed _ : FastICA iteration 3 -
signals |  Symmetric -
FastICA with block one-unit separated
— . .
the test of score function estimator }—P— FastICA iteration ——- sources
saddle points - m

score function estimator |—D—

REAT

block one-unit
FastICA iteration

i. e

Fig. 1. Flow of the Block EFICA algorithm.
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i,j =1,...,K. The minimizer is then given by the solution
of a set of K linear equations.

In our implementation, we have decided for two
(K = 2) basis functions: h;(x) = x3, that is good for sub-
Gaussian sources, and hy(x) = x/(1 + 6|x|)> working well
with super-Gaussian sources [37]. This choice turns out to
be appropriate for a wide class of distributions and offers
a good trade-off between accuracy, speed, and flexibility.
For instance, when considering signals with generalized
Gaussian distributions, the estimator (20) with our
settings used within EFICA yields comparable results with
the adaptation originally used thereby [35].

Another advantage of this estimator consists in
computational savings: once the moments E[h;(x)h;(x)]
and E[hj(x)] are estimated, the results can be used where
corresponding moments occur, which is, e.g., in the
iteration (19). The burden due to the solution of
minimizing equations is, for K = 2, negligible, thus, the
main slowing-down compared to the adaptation used in
EFICA consists in that two nonlinear functions h; and h;
must be evaluated.

Here, we should point out that it is relevant to take into
account the identity function h;(x) = x for the third basis
function in (20). Unlike in case of the original FastICA/
EFICA, this is meaningful in Block EFICA, because each
block z® of the sphered data z may not be sphered.
Specifically, when considering g(x) = ox + h(x) in (12) with
an arbitrary o and a nonlinearity h(x), the effect of the
term ox is zeroed no matter how o is chosen since
E[zz'] =L It is not so in case of the “block-iteration” (19)
due to nonsphered blocks z.

Inclusion of the identity function into the score
function estimator, in fact, conveys direct utilization of
second-order statistics of signals. The consideration is
worthwhile especially when separating signals with
changing variance. Therefore, we consider this as an
option in the Block EFICA, which is slightly more
computationally expensive.

4.5. Choice of the number of blocks

The correct number of blocks M is usually not known
in practice. The goal is to choose M such that the
distribution of S may be regarded as constant within each
block. On the other hand, M should not be overestimated,
because overparametrization may cause higher estima-
tion error. Luckily, Block EFICA is not highly sensitive to
this parameter, which is demonstrated by results shown
in Fig. 4 in Section 6. It is shown that significant
overestimations of M as well as its underestimations do
not decrease the performance seriously.

Usually, the choice of optimum M is done by taking
into account characteristics of signals to be separated. For
example, when separating speech signals, it is worth to
select M such that the length of blocks corresponds to
20-25ms where speech is almost stationary.

Blind selection of M may be based on estimation of
residual inter-signal interference (signal-to-interference
ratio—SIR) using analytical expressions (29) where corre-
sponding statistics are estimated from separated signals.

It is thus possible to see the estimated SIR of separated
signals as a function of M. At the beginning, SIR usually
improves with growing M, but for larger M the growth is
slower and slower. We would select M where the increase
of SIR becomes slow; see Fig. 4. A similar approach but
more computationally demanding would be when Block
EFICA was started with different M’s taken from a
reasonable range, and the optimum M or its effective
value was selected subject to the resulting estimate of SIR.
Another possible approach for automated choice of M can
be found, e.g., in [36].

5. Performance analysis

In this section, we analyze performance of the
proposed Block EFICA algorithm to reveal influence of its
parameters on accuracy of separation. Optimization of the
theoretical performance subject to the parameters gives
their final definition, which also completes the description
of the algorithm.

The starting point of the analysis is the derivation of
the performance of the block one-unit FastICA, which is
achieved by the fine-tunings in BEF2. We generalize the
analysis of the original one-unit FastICA from [32] that
considers the basic ICA model (2) to the piecewise
stationary model with M blocks. The analysis yields the
result summarized in the following proposition.

Proposition 1. Fork=1,...,dand I =1,..., M, assume that

(i) the RVs 52” have zero mean and finite variance 0,2((1) such
that it holds that (unit scale)

1 M
Mot =1
I=1

(ii) the functions g}f’ are twice continuously differentiable,

(iii) the following expectations exist:
1 = Els g 5N,
vy = Elgy (5]
[0)
Y =Elgi (s, (21)
and
(iv) the block one-unit FastICA algorithm is started from the

correct de-mixing matrix and stops after a single
iteration (19).

Then, the normalized gain matrix elements N'/2GE!Y have

asymptotically Gaussian distribution .4"(0, VE!Y), where

Bip + 02,52, — 200, T
VE}U _ Bre ke ke ke Mie (22)

T

fork,t=1,...,d, k#¢, provided that T,+0. Here,
T8 00
e = MZ’“k Hic»
I=1

M
o — lz 20,0
k= M k Yk
=
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Tk = Vi — Hio
% 7032 ) ;2D
1 2
Bre _MZ Y Bior
I=1
M
) <1> 2(')
/’l’k(’ - MZA

- 1 MM 20
vk,_MZ/l Wa2®,

2D 2(')
ka - MZ

ke = :uk + (Vkl - Vk)/z- (23)
Proof. See Appendix B.

The practical conclusion of this proposition is that the
variance of the gain matrix elements obtained from the
block one-unit FastICA is approximately

var{GEIV] ~ %v}j}”, ke (24)

Consequently, the aim is to minimize VE!Y subject to
free parameters (weights) to achieve the best performance
in practice. Note that M need not be necessarily equal
to a particular value. The proposition is valid if M is such
that distributions of signals are constant within each
block.

As will be shown later, all the expectations (21), and
consequently (23), are important for computing optimum
weights (A’s and later the weights for the refinement)
needed to achieve the optimum performance. In practice,
the expectations are estimated from estimated signals
by sample means. Estimation errors are therefore intro-
duced into the weights. Then, the need is that the weights
are not much sensitive to the estimation errors so as not
to worsen the final performance of the algorithm in
practice.

Here we arrive at the problem with the fully general
piecewise stationary model. We have found that the
resulting formulas for the weights (not shown here to
simplify the text) are overparametrized, which causes the
higher sensitivity of the welghts to the estimation errors
of (21) and of the variances a,( Therefore, to reduce the
number of parameters, we introduce an important
simplification by assuming the same (unit) variance of
signals in all blocks, i.e.,

2V =1, k=1,...d1=1.. M (25)

Although the assumption restricts our theoretical conclu-
sions to constant-variance signals, we will show by
simulations that the performance of the method is not
depressed in practice when the variance of signals is
changing. The main reason is that the expectations in (21)
depend on the distribution of signals and reflect thus the
variance sufficiently, and the parameters o2 20 become
redundant. This is yet more apparent when the identity
function is considered in the score function estimator. The
variances are then involved in the moments (21), because
the functions g{” have the form g{’(x) = ox + h{’(x), where
h(')(x) is a combmatlon of nonlmearltles

By using the constant-variance assumption, (22)
simplifies to

VB1U B — #k’ k¢, (26)
k

where ﬁk—(l/M)Z,, OD)?BP. Now, we derive the

optimal choice of 2\",..., A" by minimizing (26). The

result is described by the following proposition.

Proposition 2. For a fixed ke {1,...
VBIU

,d}, minimization of
given by (26) subject to )Lfg), . ,A}cM) is achieved for all
é’_ 1,...,d, £#k, when

o 1 U) 'u(l)
;"k ﬁ(])+AkBk , J=1,....M, (27)

where

M D (l)

Bk Z T (l)

Proof. See Appendix C.

After knowing the performance achieved by the fine-
tunings stage BEF2, the final performance of the Block
EFICA is given after the refinement step BEF3. The
refinement, in the original EFICA, utilizes weights cy,
given by (15), which, in fact, are functions of the
performance achieved by the fine-tunings characterized
by VY. Thanks to this relation, the weights that are
optimal for the Block EFICA are simply given when
inserting VE!Y into (15) instead of VY.

Namely, the optimum weights c;, for the Block EFICA
refinement are given by

VB]U

ke ke,
e =14 VBV +1 (28)

1, k=¢

Similarly, the performance of the Block EFICA is analogous
to (17), i.e., for GEEF being the resulting gain matrix,
VBIU(BIU | 1)

var[GEFF] ~ NW, k¢ (29)

5.1. Optimal performance

Here, we study the special case when the nonlinea-
rities selected by the score function estimator (20) equal
the true score functions, ie., g’ =y, for k=1,....d,
I=1,.

Similally to the equations above after (17), it holds that

0=y = Kff) W =1, and 1 = =k’ — 1. Next, the
formula for A’s (27) snnpllﬁes to a constant, namely,
),g) =1/M, but we may consider all Z’s equal to
one, because then f5; =V, =%k, and f, =1. Now, the
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performance (26) becomes equal to

1
VEU=Rk_1. (30)

Inserting (30) into (29) we get

1 K
var[GEEF] ~ ‘

R M (31)

As compared to the CRLB;, given by (7), it follows that the
Block EFICA is asymptotically efficient within the piece-
wise stationary model with constant variance signals.
Although this does not mean the asymptotic efficiency of
Block EFICA for the fully general model, we will show by
simulations that its performance is usually very close to
the CRLB even when variances of signals are not constant.

The uniformity of the weights (27) for the particular
case studied here gives rise to the Uniform Block EFICA, as
defined in Section 4.3, because d - M parameters 2’ need
not be estimated when g;:)(~) are assumed to be the score
functions. This means further reduction of parameters,
which may be useful, for instance, when the number of
blocks M is unknown and may be overestimated.

6. Experimental results

We have done several experiments simulating various
scenarios to demonstrate good performance and versati-
lity of the proposed Block EFICA algorithm [45]. In
comparisons, we select algorithms that are supposed to
be the most competitive for a given scenario. Thus, the
original symmetric FastICA algorithm [5] with the non-
linearity g(-) = tanh(-) and the original EFICA algorithm
[16,37] are considered as competitive methods within
non-Gaussianity-based approaches. In several examples,
we also consider the BGL algorithm from [14] that is
designed for Gaussian nonstationary signals.

The NSNG algorithm [27] stands for a method belong-
ing to the same class of algorithms as Block EFICA. As
stated in Section 1, the method performs well in simple
examples with “few” signals, but it is considerably
unstable in more realistic scenarios. Therefore, we show
its performance only in cases where the method yields
meaningful results (Figs. 2 and 6).

A common criterion used in experiments is the
interference-to-signal ratio (ISR), for the k-th separated
signal defined as

d 2
_ Zf:l,[#k G
= 2

Kk

ISR, , (32)

where G=WA is the gain matrix computed as the
product of the separation matrix W obtained by an
algorithm and the known mixing matrix A. Prior to the
computation, the rows of G are permuted to avoid the
indeterminacy of their original order. Such permutation is
naturally chosen to yield the best value of the criterion.

For each experiment, we show the average computa-
tional loads of methods in legends of the corresponding
figures. All simulations were running in Matlab™ on a PC
with 3 GHz processor and 2 GB of RAM.
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Fig. 2. Mean interference-to-signal ratio of separated signals in the first
experiment computed over 100 Monte Carlo trials. Note that CRLB is not
defined here, because, in the mixture of 20 signals, some of them are
distributed according to RVs with generalized Gaussian distribution with
2<0.5, which have k = +oo; see e.g., Appendix B in [16].

6.1. Validation of the analysis

The examples presented in this subsection aim at
validating theoretical conclusions derived in Section 5 and
at demonstrating the performance of the Block EFICA in
the framework of the piecewise stationary model with
constant-variance signals.

To this end, we compare the proposed Block EFICA with
the original EFICA algorithm, which performs efficiently
when working with signals with generalized Gaussian
distributions [16] with parameter o, GGD(«), obeying the
basic ICA model (2). However, in the experiments
presented here we consider signals with varying distribu-
tion from one block to the other. Then, the behavior of
EFICA is explained by the analysis of Block EFICA: using
the same nonlinear functions in all blocks, the functions
cannot match the varying score functions nor the weight
for fine-tunings and refinements, thus, the performance of
EFICA is suboptimal. The same holds for the other FastICA
variants.

In the first example, we separate 20 artificial signals of
length N = 10* mixed by a random matrix. Each signal
consists of four blocks of the same length N/4. The first
and the third blocks have Gaussian distribution, which is
equivalent with GGD(2), and the second and the fourth
blocks have the distribution GGD(«). The parameter o is
fixed for each of 20 signals, where its values are uniformly
chosen from [0.1, 10]. The variance of all the distributions
is one, thus, the signals have constant variance.

Theoretical performance, marked in figures by “theo-
ry” in the legend, was estimated from separated signals
using (26) and (29). Results of this experiment corroborate
validity of the analysis due to proximity of the theoretical
results with the empirical ones. They also demonstrate the
improved performance of the proposed method compared
to EFICA thanks to considering different distributions on
the four blocks of signals. We do not demonstrate the
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Fig. 3. Mean interference-to-signal ratio of 10 signals of length N = 10*
averaged over 1000 Monte Carlo trials. The first k- N/10 samples of the
k-th signal are uniformly distributed, and the remainder is Gaussian.

performance of the NSNG algorithm here, because its
original implementation* is designed for sub-Gaussian
signals only, and the method fails to converge in this
experiment.

To test a scenario with sub-Gaussian signals, we show
in Fig. 3 the performance achieved by separation of 10
signals composed of M =10 blocks. The k-th signal,
k=1,...,10, is uniformly distributed (with variance
one) in the first k blocks and Gaussian elsewhere.

Similarly to the previous experiment, this example
demonstrates the strongest point of the Block EFICA,
which consists in its ability to adapt to varying signal
distribution. The same performance was achieved by the
NSNG algorithm, and it performed yet better when
smaller length of data was considered, which is likely
thanks to lower number of parameters compared to Block
EFICA. However, also in this scenario, NSNG failed to
converge in a few trials. To allow presentation of its
performance, the trials where the divergence occurred
had to be skipped.

Fig. 4 shows the overall performance averaged over all
sources when changing the input parameter M in Block
EFICA from 1 to 40. Although performance is optimum for
the correct value of M = 10, the deterioration of the
performance due to overestimation or underestimation of
M is not high. For M close to 1 the performance of Block
EFICA approaches that of EFICA, which is as expected.
Certain local maxima can be observed for M being
multiple of 10, which is thanks to fitting the boundaries
of blocks exactly to the instants where the distributions of
signals are switched. Nevertheless, the negligible im-
provement demonstrates lower importance of the correct
fitting.

The theoretical performance computed using (29)
monotonically grows with M. It therefore becomes slightly
overoptimistic for higher values of M, because it does not
take the practical effect of overparametrization into
account. Nevertheless, it may be used in order to choose
an effective value of M.

4 The implementation of the NSNG algorithm was obtained from
web-site http://www-lmc.imag.fr/SMS/SASI/bliss.html.
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Fig. 4. Average interference-to-signal ratio of 10 sub-Gaussian signals
achieved by Block EFICA when changing the number of blocks M
considered by the algorithm.

6.2. Signals with changing variance

Since the proposed Block EFICA exploits the piecewise
stationary modelling concept, we test its ability to
separate nonstationary signals with varying variance. For
that purpose, we design a simple experiment where a
signal having variable variance is separated from another
signal that is stationary. The first (nonstationary) signal
has variances, respectively, equal to 1, g, and ¢? in the
three consecutive blocks of the same length, and the
second signal is Gaussian having the constant variance
equal to one. An example of the signals for a particular
value of the parameter o, which is considered on interval
(0,1}, is shown in Fig. 5.

We consider two situations that differ in selected
distribution of the first nonstationary signal. In the first
setup, the distribution is Gaussian in all blocks. Then, for ¢
close to one, where the two signals are almost stationary,
the mixture cannot be separated due to Gaussianity of the
signals. In the second setup, the distribution is Laplacian,
which makes the mixture separable even for ¢ close to
one. The signals can be separated for both cases when ¢ is
close to zero. Then, the first signal is strongly nonsta-
tionary and has a different variance-envelope than the
second signal, which is the general requirement of the BGL
algorithm. Fig. 6 shows results obtained for both settings
of the experiment.

The first scenario with Gaussian signals fits the Block
Gaussian model. In such a case, the theoretical perfor-
mance of the BGL algorithm attains corresponding
Cramér-Rao bound, here, given by CRLB3 = CRLB,. There-
fore, its performance should be optimal, which is
confirmed by the results shown by Figs. 6(a) and (b).
Similar performance was achieved by the NSNG algorithm
without yielding any instability, which reveals its ex-
cellent ability to utilize the nonstationarity of signals in
simple examples such as the two-dimensional one
considered here.

The proposed Block EFICA algorithm achieves compar-
able results up to ¢ € [0.7, 1], where the Gaussian signals
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Fig. 5. Illustration of the Gaussian signals of length N = 10* when the parameter ¢ that controls the nonstationarity of the first signal equals 0.1.

are almost stationary, which makes them hardly distin-
guishable for non-Gaussianity-based methods. Hence, the
breakdown of the performance is caused by failures of the
initialization provided by the symmetric FastICA in
the first step BEF1. In our experiments not shown here
due to space, we observed that if “good” initialization is
guaranteed, the final performance of Block EFICA is
comparable with that of the BGL algorithm. Therefore,
Block EFICA may be initialized by another method that
performs well in this particular case. Nevertheless, our
selection, the symmetric FastICA with the test of saddle
points, appears to be suitable for most applications as
discussed in Section 4.3.

The plots marked by “Block EFICA (identity)” demon-
strate further improvement of Block EFICA done via
involving the identity function in the score function
estimator (see Section 4.4). The better performance shows
that the option allows a more effective exploitation of
nonstationarity of signals.

The second scenario simulates the case when the
original signals exhibit both the non-Gaussianity and the
nonstationarity since the distribution of the first signal is
Laplacian. Here, the Block EFICA yields performance that is
superior to the other methods. The BGL algorithm suffers
from stationarity of the signals as ¢ is approaching one.
Conversely, the original EFICA does not utilize effectively
their nonstationarity for ¢ close to zero. The implementa-
tion of the NSNG algorithm lacks the ability to accurately
estimate the score function of the Laplacian distribution.
It has significantly lower performance than EFICA and
Block EFICA, nevertheless, its ability to profit both from
nonstationarity and non-Gaussianity is confirmed.

6.3. Separation of noisy instantaneous mixtures of
speech signals

In this example, we compare performances of algo-
rithms in a noisy scenario. Fig. 7 shows results of

separation of 10 speech signals randomly selected from
a database, each of length 5000 samples. The signals were
mixed by a random matrix, Gaussian noise was added to
each mixed channel with the variance corresponding to a
given signal-to-noise ratio (input SNR), and the mixture
was separated and evaluated in terms of signal-to-
interference-plus-noise ratio (SINR). The experiment was
designed according to the rules proposed in [39].

Since speech signals often exhibit, beside nonstatio-
narity and non-Gaussianity also spectral diversity, we
compare the performance of Block EFICA with the
SOBI-RO algorithm from [40] that utilizes the spectral
diversity, and ThinICA [11] using also their non-Gaussian-
ity. As can be seen from the results, Block EFICA is not
sensitive to the additive noise as inherited from EFICA and
FastICA. The achieved SINR decreases smoothly with input
SNR. In our example, Block EFICA outperforms the
compared algorithms; however, note that the perfor-
mance strongly depends on properties of the to-be-
separated signals.

6.4. Separation of natural convolutive mixture of
speech signals

To demonstrate strengths of Block EFICA on real-world
data, we present an example where a convolutive mixture
of two speech signals recorded by two microphones is
separated. The mixture is separated using the procedure
from [38] as follows.”> The first and the most important
stage relies on an ICA decomposition of a subspace
spanned by delayed signals from microphones, i.e.,

x1(n),xy(n—1),....x;(n—L+1),
X2(n),xo(n—1),...,xq(n—L+1), (33)

5 The method from [38] is available at http://itakura.ite.tul.cz/
zbynek/tddeconv.htm.
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Fig. 7. Results of separation of noisy mixtures of speech signals averaged
over 100 independent trials.

where L is the length of separating filters. Note that this
way the convolutive mixture problem is transformed into
an instantaneous one, thus, we can apply any ICA
algorithm that is originally designed for instantaneous
mixtures (including Block EFICA). The algorithm thus
yields independent components of the subspace (33) that,
in fact, correspond to outputs of d-L multiple-input
single-output filters of length L. The key objective is that
each independent component should contain a contribu-
tion of one original source only, which is, in an ideal case,
a filtered copy of the source [41-43].

The procedure from [38] continues by grouping the
components into clusters that correspond to the same
original source. Finally, the clusters (the components in
the clusters) are used to reconstruct the original sources;
see [38] for further details. Anyway, the idea of this
experiment comes from the fact that the final results of
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a Mixed signals

b Separated signals by using the BGL algorithm

C Separated signals by using the Block EFICA algorithm

Fig. 8. Results of separation of real-world convolutive mixture of two
speech signals recorded by two microphones. Respective ICA methods
were applied to the subspace generated by selected data segment of
6000 samples. The segment is delimited by vertical lines in the graphs.
(a) Mixed signals. (b) Separated signals by using the BGL algorithm. (c)
Separated signals by using Block EFICA algorithm.

the separation provide a benchmark for testing ability of
different ICA methods for instantaneous mixtures to
separate convolutive audio mixtures, i.e., to yield such
independent components that correspond to particular
original sources.

Fig. 8(a) shows Lee’s data® containing real recordings of
two speakers (played over loudspeakers) simultaneously
saying the digits from one to 10 in English and in Spanish,
respectively. The loudspeakers were placed closely to the
microphones (60 cm), so direct-path signals and possibly
early reflections from the closest objects are much
stronger than the other reverberations in the recorded

6 Lee’s data are available online at http://www.cnl.salk.edu/~tewon/
Blind/blind_audio.html.

convolutive mixture. Hence, very short separating filters
applied through [38] (of the length L) may separate these
signals efficiently.

Since the rhythms of the speech signals are similar and
synchronized, there occur many short segments (say of
length 6000 samples—the sampling frequency is 16 kHz)
where the dynamics of the speech signals are very close.
Owing to possible changing mixing conditions (e.g.,
moving sources), the aim is to separate as short segments
of signals as possible. However, the similar dynamics of
sources in short segments cause malfunctioning of
nonstationarity-based methods. From this point of view,
the methods that use not only the nonstationarity but also
the non-Gaussianity of speech are more flexible, because
they do not fail in such situations.

To demonstrate this, Figs. 8(b) and (c) show results of
separation with L=20 via BGL” and Block EFICA,
respectively, when only using a short segment of data
for the mixture identification (learning data). Then, the
resulting separating filters are applied to the whole
signals. Since the mixture is here stationary (the loud-
speakers and microphones remain in their positions
during the whole recording), the separated signals reveal
ability of the ICA methods to separate them using data
from the given data segment only.

Since the dynamics of signals are too similar in the
chosen segment, the nonstationarity-based BGL algorithm
yields poorly separated components of (33), so that
average SIR of the finally separated sources is 3.3dB}
while the original SIR of the mixed signals is 3.4dB. By
contrast, the Block EFICA algorithm succeeded to separate
the signals yielding average SIR of 12.2 dB, which means
“good” result in this convolutive audio source separation
task.

7. Conclusions

We have proposed the Block EFICA algorithm that
effectively exploits both the non-Gaussianity and the
nonstationarity of original signals to separate them. The
method efficiently solves the ICA task defined by the
piecewise stationary model. It yields comparable perfor-
mance as methods only intended for marginal cases: the
non-Gaussianity-based model or the Block Gaussian
model. Namely, it has about the same performance as
the EFICA algorithm if the separated signals are stationary
and non-Gaussian. In case of Gaussian piecewise station-
ary signals, Block EFICA is not claimed to be optimum in
theory, but in our simulations we have shown that its
performance may be close to that of the BGL algorithm
that performs optimally in this case.

In so doing, Block EFICA performs best in case
of compound scenarios involving non-Gaussian and

7 In fact, the method from [38] utilizes a fast variant of BGL named
BG_WEDGE. The algorithm is based on a fast joint diagonalization
algorithm with adaptive weights proposed in [17].

8 The signal-to-interference ratio was evaluated by means of the
BSS_EVAL toolbox from [46] that uses projections of signals to avoid
indeterminacies due to arbitrary filtering of separated signals. Lee’s
separated signals were used as the reference “correct” signals.
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nonstationary signals. The considered number of blocks M
need not be precisely determined, as the method is not
highly sensitive to it. Moreover, it yields equivalent
performance with that of EFICA when M is equal to one.
Finally, Block EFICA provides an appealing alternative to
the theoretically optimum NSNG algorithm in terms of
better stability and lower computational complexity,
especially, when applied to high-dimensional data and,
therefore, may be successfully applied to real-world BSS
problems.
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Appendix A. Derivation of CRLB;

In this appendix, we provide a simple derivation of
CRLBs based on results from [32] and the corrections [44].

We start from Eq. (36) of [32] that, for N = 1, gives the
mn-th element of the Fisher information matrix® of an
independent observation of (2)

(FD)mn = Sjudui + 9jiduudyi(M; — Ki — 2) 4 61y 6yjKi, (34)

where m=(Gi-1)d+j and n=@w-1)d+v with
Ljuv=1,....d n;= E[Sizl//iz(s,')], and ¢; is Kronecker’s
delta. This result can be easily extended for signals with
general variance o7 = E[s?] ([32, p. 1201], the first column,

J
the fourth line of the second item in the enumeration),

which gives
2
o
— 2) + 5,~u§,,j —O'; Ki

i

(FD)mn = 0judui + 0ji0uudui (’71‘ - Ki

(35)

where «; and #; are defined for normalized pdfs of the
sources in order to be scale-invariant.

Now it follows that the FIM of an observation
from the I-th block of the piecewise stationary
model (3) should have the block-dependent quantities
labelled by the superscript (I), and the FIM of
all N independent observations has the mn-th element
equal to

(Fl)mn =N

o 1) %) )
Sjudui +5ﬁéuu0mMZ<n, WK —2>

I=1
1M 2 ;
+5,uawMZ o7 ”]. (36)

The structure of the FIM (36) is the same as in case of the
basic ICA model (2), i.e., it can be written in a form F; =
P + X with P being a special permutation matrix and X

9 In the corrections [44], it is shown that the first term in (36) of [32]
should be removed. This means that, for N = 1, the relation is correct.

being diagonal

20 520 o2 20
z <I> L) 0
Zdlag 2(” SR kP, 2(“ KDY -2,
01 03
z<’> 2 2 0}
o3 g 0a g 91 (dn Ua 1 <l) ng)
G202 G2 W T oh
03 03 04 04
(37)

Therefore, the inversion of F; can be derived using
Appendix D of [32]; see the simplification due to the
corrections. Using appropriate substitutions according to
(90) in [32], the resulting CRLB; given by (8) readily
follows.

Appendix B. Proof of Proposition 1

We will follow the easiest way by generalizing proof of
analogous proposition in [32] (see the Appendix A there-
from). Similar notations will be used, namely, s, will be
N x 1 vector of samples of the k-th original signal, i.e., the
k-th row of S, with the difference that the I-th block of
N/M samples is distributed according to RV s“) Owing to
the indeterminacy of scale of original sngnals, the
variances of s‘” can be assumed to be such that s, has
unit scale (assumption (i) of the proposition).

Next, the vector u, contains normalized elements of s
so that u, has the second-order sample-moment exactly
equal to one. The vectors z;, and X, denote samples of the
respective signals. The nonlinearity g(-) used for the k-th
signal will be distinguished by the subscript k, i.e., g,(-). It
applies to the vectors elementwise, so that function
g\ (.) applies to the I-th block of N/M elements.

Now, using the third assumption of Proposition 1 given
by (21), Egs. (40) and (41) from [32] change, respectively,
to

_ N—+o00 _

N lsigk(sk) —t M (38)
1 N—+oc0 _

N7'gl(s0ly -5 Vi (39)

Note that v denotes the same expectations that are in [32]
denoted by p. 1y stands for N x 1 vector of ones.

Using this, all Egs. (42)-(64) in [32] change according
to the substitutions

My <= s (40)

Pr < Vk. (41)

The only exceptions are Eqs. (42), (45), and (62), which
should be revised due to different variance in blocks, and
it gives, respectively,

N7'g T80 © 5 =5 Vi, (42)
g (U, © uy) = Nvy, + 0p(N), (43)
E[(gfu,)’] = NP, (44)

where g, is the simplified notation of g;(u,). Recomputa-
tion of (65), (71), and (75) in [32] using the above
substitutions readily yields the result of the proposition
given by (22).
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Appendix C. Proof of Proposition 2

The criterion (26) can be written in the form

1T
VBIU _ il kk (45)
T TR,
with
=40, AT, (46)
. 1
Iy = diagip}”, ..., pM1 - Mmkmﬁ, (47)
mye = [T (48)
=12, 0", (49)
w0 =0 — . (50)

The goal is to minimize (45) subject to elements of [,
which is equivalent with maximizing
T T
maxw. (51)
Ik ﬂkl"kllk

Let y, = F,l/zﬂk, where the matrix F}{/z obeying F;/ZF;/Z =
I', exists thanks to positive semidefiniteness of I'j
(vBIY denotes variance, which must be always nonnega-
tive). Since (45) is invariant subject to nonzero multiple of
lx, we can introduce a constraint ||| = const., and (51)
can be written in the form of classical eigenvalue problem

Tr71/2ﬁ ﬂTF71/2
max Jk=k ’T‘k k. Yk
Tyll=1 vy

The rank of the matrix l",:l/zﬁkﬁzrljl/z is one, thus, the
eigenvector corresponding to the only nonzero eigenvalue,
i.e., the solution of (52), is vy, = I‘,:”zﬂk. Hence, [ that
minimizes (45) is

(52)

I = I . (53)

Using the matrix inversion lemma for computation of F,ﬂ,
(27) follows.
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